首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52370篇
  免费   10102篇
  国内免费   12009篇
测绘学   6295篇
大气科学   10712篇
地球物理   12476篇
地质学   22729篇
海洋学   6880篇
天文学   5546篇
综合类   3500篇
自然地理   6343篇
  2024年   121篇
  2023年   640篇
  2022年   1602篇
  2021年   1941篇
  2020年   2153篇
  2019年   2274篇
  2018年   2080篇
  2017年   2285篇
  2016年   2407篇
  2015年   2649篇
  2014年   3287篇
  2013年   3704篇
  2012年   3451篇
  2011年   3726篇
  2010年   3199篇
  2009年   3824篇
  2008年   3813篇
  2007年   3873篇
  2006年   3705篇
  2005年   3225篇
  2004年   2745篇
  2003年   2425篇
  2002年   2110篇
  2001年   1886篇
  2000年   1664篇
  1999年   1556篇
  1998年   1417篇
  1997年   1102篇
  1996年   1022篇
  1995年   973篇
  1994年   821篇
  1993年   732篇
  1992年   453篇
  1991年   368篇
  1990年   290篇
  1989年   207篇
  1988年   218篇
  1987年   96篇
  1986年   75篇
  1985年   70篇
  1984年   71篇
  1983年   26篇
  1982年   37篇
  1981年   23篇
  1980年   28篇
  1979年   20篇
  1978年   32篇
  1977年   29篇
  1976年   3篇
  1954年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
芦俊  石瑛  杨春颖 《地球物理学报》2018,61(8):3310-3323
针对裂缝各向异性介质,本文提出一种非正交假设下的矢量波场分离方法.本文首先对多分量地震勘探中常见的波型泄漏现象进行了数学描述,提出在纵、横波波场分离的同时应该考虑恢复纵、横波的矢量振幅.为了对裂缝方位角与各向异性系数进行定量预测,本文将矢量波场分离拆分成三个步骤来实施:第一步,用Z、R两分量的仿射坐标系变换分离ZR平面内的P波投影与SV波;第二步,用ZR平面内的P波投影与T分量的仿射坐标系变换分离P波与SH波;第三步,用纯净的SV波与SH波的成像剖面分离快慢横波,并预测裂缝发育参数.模型数据与实际数据的试验结果表明,本文提出的纵、横波波场分离方法能够获得完整的矢量振幅信息,并提供裂缝预测的精度.  相似文献   
92.
由于卫星重力梯度观测的有色噪声特性和海量观测特征,在利用直接法进行重力场模型的最小二乘求解时,观测值的协方差阵为超大型的非对角阵,这给数值求解带来了极大困难.本文提出了一种基于先验误差功率谱密度的最优ARMA滤波模型构建方法,结合法方程的分块求解策略,可实现对卫星重力梯度观测值的高效滤波处理.数值仿真结果表明,利用最优ARMA滤波器进行时域滤波后,法方程的态性得到了明显改善,重力梯度观测值中的有色噪声得到了有效的"白化"处理,大地水准面精度得到了显著提升.  相似文献   
93.
The study is based on the underground fluid observation data in Lijiang area, northwest Yunnan Province. The data include the water level and temperature in Dangxiao well and Jinjia well, and the ion measurements in Ganze spring. Combining with the data of regional hydrogeology, rainfall, well structures, and the geothermal gradient, we analyzed the variations of each measurement item before the Ludian MS6.5 earthquake on August 3, 2014 and discussed the possible mechanism for the abnormal variations. The water levels of both Dangxiao well and Jinjia well are influenced by local rainfall, but the former shows hysteresis according to rainy seasons and is the long trend influence; while the latter shows synchronization between high water level and rainy season, indicating good connection between well water and shallow aquifer. The recharge water for Dangxiao well is in relatively low temperature, and the temperature sensor is located at the major connecting section between the well water and the aquifer; the water temperature variation is mainly affected by the discharge status and variation of water level. The Jinjia well is always in static level, and the temperature sensor is below the major connecting section between the well water and aquifer, so the water temperature is affected little by water level variations and in smooth fluctuation. The recharge source for Ganze spring can generally increase the contents of calcium and magnesium ions, so does the conductivity. The water level data of Dangxiao well since 2012 are decomposed with wavelet technique. The results, excluding such high-frequency components as the noise and the semidiurnal and daily wave components influenced by earth tide, are further processed with difference method in order to eliminate the trend effect. The results show that the relative change of water level is enhanced and in relatively rapid increase before the Ludian MS6.5 earthquake; the corresponding water temperature values are high. The tendency of water level in Jinjia well displays descending, while the corresponding water temperature shows ascending. The content of calcium ion, magnesium ion, bicarbonate ion, and conductivity of Ganze spring are descending, while the content of fluoride ion is ascending. The abnormal variations of underground fluid in Lijiang area appeared in turns and were accompanied with minor earthquakes before Ludian MS6.5 earthquake, which indicates enhancing of regional stress and increasing of fluid activity.  相似文献   
94.
For snowmelt-driven flood studies, snow water equivalent (SWE) is frequently estimated using snow depth data. Accurate measurements of snow depth are important in providing data for continuous hydrologic simulations of such watersheds. A new hydrologic fidelity metric is proposed in this study to evaluate the potential contribution of particular snow depth datasets to flow characteristics using observed data and hydrologic modeling using the Variable Infiltration Capacity (VIC) model. Data-based hydrologic fidelity of snow depth measurements is defined as a categorical skill score between the snow depth in the watershed and the hydrograph peak or volume at the watershed outlet. Similarly, model-based hydrologic fidelity is defined as a categorical skill score between the model-simulated snow depth and the model-simulated hydrograph peak or volume. The proposed framework is illustrated using the Pecatonica River watershed in the USA, indicating which sites have a higher hydrologic fidelity, which is preferred in hydrologic studies.  相似文献   
95.
The effects of soil water content (SWC) on the formation of run‐off in grass swales draining into a storm sewer system were studied in two 30‐m test swales with trapezoidal cross sections. Swale 1 was built in a loamy fine‐sand soil, on a slope of 1.5%, and Swale 2 was built in a sandy loam soil, on a slope of 0.7%. In experimental runs, the swales were irrigated with 2 flow rates reproducing run‐off from block rainfalls with intensities approximately corresponding to 2‐month and 3‐year events. Run‐off experiments were conducted for initial SWC (SWCini) ranging from 0.18 to 0.43 m3/m3. For low SWCini, the run‐off volume was greatly reduced by up to 82%, but at high SWCini, the volume reduction was as low as 15%. The relative swale flow volume reductions decreased with increasing SWCini and, for the conditions studied, indicated a transition of the dominating swale functions from run‐off dissipation to conveyance. Run‐off flow peaks were reduced proportionally to the flow volume reductions, in the range from 4% to 55%. The swale outflow hydrograph lag times varied from 5 to 15 min, with the high values corresponding to low SWCini. Analysis of swale inflow/outflow hydrographs for high SWCini allowed estimations of the saturated hydraulic conductivities as 3.27 and 4.84 cm/hr in Swales 1 and 2, respectively. Such estimates differed from averages (N = 9) of double‐ring infiltrometer measurements (9.41 and 1.78 cm/hr). Irregularities in swale bottom slopes created bottom surface depression storage of 0.35 and 0.61 m3 for Swales 1 and 2, respectively, and functioned similarly as check berms contributing to run‐off attenuation. The experimental findings offer implications for drainage swale planning and design: (a) SWCini strongly affect swale functioning in run‐off dissipation and conveyance during the early phase of run‐off, which is particularly important for design storms and their antecedent moisture conditions, and (b) concerning the longevity of swale operation, Swale 1 remains fully functional even after almost 60 years of operation, as judged from its attractive appearance, good infiltration rates (3.27 cm/hr), and high flow capacity.  相似文献   
96.
Hans Van de Vyver 《水文研究》2018,32(11):1635-1647
Rainfall intensity–duration–frequency (IDF) curves are a standard tool in urban water resources engineering and management. They express how return levels of extreme rainfall intensity vary with duration. The simple scaling property of extreme rainfall intensity, with respect to duration, determines the form of IDF relationships. It is supposed that the annual maximum intensity follows the generalized extreme value (GEV) distribution. As well known, for simple scaling processes, the location parameter and scale parameter of the GEV distribution obey a power law with the same exponent. Although, the simple scaling hypothesis is commonly used as a suitable working assumption, the multiscaling approach provides a more general framework. We present a new IDF relationship that has been formulated on the basis of the multiscaling property. It turns out that the GEV parameters (location and scale) have a different scaling exponent. Next, we apply a Bayesian framework to estimate the multiscaling GEV model and to choose the most appropriate model. It is shown that the model performance increases when using the multiscaling approach. The new model for IDF curves reproduces the data very well and has a reasonable degree of complexity without overfitting on the data.  相似文献   
97.
To investigate stable isotopic variability of precipitation in Singapore, we continuously analysed the δ‐value of individual rain events from November 2014 to August 2017 using an online system composed of a diffusion sampler coupled to Cavity Ring‐Down Spectrometer. Over this period, the average value (δ18OAvg), the lowest value (δ18OLow), and the initial value (δ18OInit) varied significantly, ranging from ?0.45 to ?15.54‰, ?0.9 to ?17.65‰, and 0 to ?13.13‰, respectively. All 3 values share similar variability, and events with low δ18OLow and δ18OAvg values have low δ18OInit value. Individual events have limited intraevent variability in δ‐value (Δδ) with the majority having a Δδ below 4‰. Correlation of δ18OLow and δ18OAvg with δ18OInit is much higher than that with Δδ, suggesting that convective activities prior to events have more control over δ‐value than on‐site convective activities. The d‐excess of events also varies considerably in response to the seasonal variation in moisture sources. A 2‐month running mean analysis of δ18O reveals clear seasonal and interannual variability. Seasonal variability is associated with the meridional movement of the Intertropical Convergence Zone and evolution of the Asian monsoon. El Niño–Southern Oscillation is a likely driver of interannual variability. During 2015–2016, the strongest El Niño year in recorded history, the majority of events have a δ18O value higher than the weighted average δ18O of daily precipitation. δ18O shows a positive correlation with outgoing longwave radiation in the western Pacific and the Asian monsoon region, and also with Oceanic Niño Index. During El Niño, the convection centre shifts eastward to the central/eastern Pacific, weakening convective activities in Southeast Asia. Our study shows that precipitation δ‐value contains information about El Niño–Southern Oscillation and the Intertropical Convergence Zone, which has a significant implication for the interpretation of water isotope data and understanding of hydrological processes in tropical regions.  相似文献   
98.
A new model is presented for multiblock columns subjected to earthquakes, which contains an impact and an opening model. Both in the impact and in the opening model, all the possible opening configurations are investigated because it was found that in many practical cases, unexpected patterns may occur. The model is purely mechanical: assuming rigid blocks and classical (inelastic) impact. The effect of energy dissipation during impact was investigated. Using our model in accordance with the literature, it was found that monolithic blocks are more vulnerable to overturning than multiblock systems.  相似文献   
99.
Interrill erosion processes on gentle slopes are affected by mechanisms of raindrop impact, overland flow and their interaction. However, limited experimental work has been conducted to understand how important each of the mechanisms are and how they interact, in particular for peat soil. Laboratory simulation experiments were conducted on peat blocks under two slopes (2.5° and 7.5°) and three treatments: Rainfall, where rainfall with an intensity of 12 mm h?1 was simulated; Inflow, where upslope overland flow at a rate of 12 mm h?1 was applied; and Rainfall + Inflow which combined both Rainfall and Inflow. Overland flow, sediment loss and overland flow velocity data were collected and splash cups were used to measure the mass of sediment detached by raindrops. Raindrop impact was found to reduce overland flow by 10 to 13%, due to increased infiltration, and reduce erosion by 47% on average for both slope gradients. Raindrop impact also reduced flow velocity (80–92%) and increased roughness (72–78%). The interaction between rainfall and flow was found to significantly reduce sediment concentrations (73–85%). Slope gradient had only a minor effect on overland flow and sediment yield. Significantly higher flow velocities and sediment yields were observed under the Rainfall + Inflow treatment compared to the Rainfall treatment. On average, upslope inflow was found to increase erosion by 36%. These results indicate that overland flow and erosion processes on peat hillslopes are affected by upslope inflow. There was no significant relationship between interrill erosion and overland flow, whereas stream power had a strong relationship with erosion. These findings help improve our understanding of the importance of interrill erosion processes on peat. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
100.
Geochemical and isotopic tracers were often used in mixing models to estimate glacier melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier melt tracer signature and its influence on tracer‐based hydrograph separation results received less attention. We present novel tracer data from a high‐elevation catchment (17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial, as well as the subdaily to monthly tracer variability of supraglacial meltwater and the temporal tracer variability of winter baseflow to infer groundwater dynamics. The streamflow tracer variability during winter baseflow conditions was small, and the glacier melt tracer variation was higher, especially at the end of the ablation period. We applied a three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were estimated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a marked effect on the estimated glacier melt contribution during events with large glacier melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer signature played a negligible role in applying the mixing model. The results of this study (a) show the necessity to apply a multiple sampling approach in order to characterize the glacier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff dynamics in catchments with a glacial flow regime.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号